手机浏览器扫描二维码访问
其余众人见状,也顺势围到了桌子边上。
“如果双通道信号采用正交设计,那么本质上还是只能对瞬时带宽做出一倍的提升,虽然相比于单通道drfm已经降低了对adc和ram的性能要求,但这样做的还是不够彻底。”
“但我们可以考虑放弃分相采样或者分时采样的思路,设计多个窄带的drfm子系统,按频段分路,每一路与一个压控振荡器(vco)再进行混频,输出基带模拟信号由一窄带drfm子系统进行处理,这样就可以几乎完全规避对于drfm的带宽要求,采样频率也可以降为原先的几分之一。”
此时常浩南手中的铅笔在郭林看来,宛如一根魔法棒一般,笔尖和纸面交汇之处随着前者画图的动作而不断飞出奇迹。
这一次的电路原理比较复杂,所以常浩南画了有一会才最终完成。
“这么设计从理论上确实是可行的,但工程上如果增加这么多的硬件,那新增的每个部分都会带来系统误差,叠加起来产生的底噪和信号畸变必定非常严重。”
相比于还在分析原理图的郭林,徐洋倒是已经开始思考这个思路的可行性问题了:
“别的不说,这几条通道之间的不一致性就需要进行相位级补偿,对于双通道系统来说,还可以考虑共用一个参考时钟实现通道间相参,这样虽然规避了高规格的adc和ram,但是通道数增加对于参考时钟的要求又会提升,我们还是造不出这个东西。”
“你说的这个用参考时钟的多通道技术一般是用在示波器上面的,干扰机的drfm架构比示波器复杂得多,别说我们,估计美国人也没办法单靠时钟性能走通这条路线。”
这个思路之所以被系统认为可以走通,自然是因为常浩南早就考虑过了这方面的问题。
“所以我们接下来要做的,就是对各种误差因素分别进行补偿。”
“比如可以采用校准和补偿相结合的办法在基带对采样数据进行失真修正,分别对每个通道内的幅频特性及群延时特性误差进行抑制,从而保证重构信号与原始信号接近。”
“那么相位差问题呢?”
“相位差没有太多取巧的办法,但可以进行测量,或者说,进行常精确的预估,从而提前进行修正。”
常浩南在周围惊愕的眼神中边写边解释:
“假设我们通过数模转换器发送一个斜率为k的宽带脉冲信号,该信号通过反馈支路到达射频输入端,经合路器、带通滤波、下变频、低通滤波后,被dac采集到信号处理器内部与原始发射信号进行stretch去斜处理。由于两个信号之间存在延时差,因此就会得到一个单频输出Δf,该频率即可以基本代表输入-输入过程中间的延时量:Δt=Δfk。”
“就……这么简单?”
旁边的一名工程师惊讶地发现自己竟然能听懂。
他本以为会面对一套像是天书一样的理论,然后需要回去研究几天才能明白。
“我现在只是单纯讲一下原理肯定简单,但后面还需要具体考虑补偿的算法,工作量还是不小的。”
放下铅笔的常浩南耸了耸肩,旁边的郭林极有眼力见地递上了一杯温度正好的茶水。
给大佬递茶.jpg
“常工喝口水。”
常浩南端起杯子一饮而尽:
“当然了,就算是在最理想的状态下,也不可能做到完全消除多频段之间的误差,尤其是对于宽带跨通道信号,频段交界点处产生的信号失真是从原理上就一定存在,而且越叠加越多的,所以我们也不能无限制地做它二十三十个通道,那样恐怕连开机自检都过不去。”
“我目前的计划是,用我们能搞出来并且能稳定封装的350m,弄上10个并行通道,这样哪怕算上频段交界处的带宽损失,也基本可以实现2.5ghz左右的带宽覆盖。”
“那也不少了啊……”
14所的主业就是搞雷达的,对于这种东西自然是足够敏感:
“只要能覆盖住6.5-9ghz这个频率范围,就足够应付绝大多数对空雷达使用的c波段和x波段信号。”
尽管x波段的中心点在10ghz上,但考虑到衰减问题,实际上大多数雷达都不会采用过高的频率,9ghz已经足够用了,并且在通信领域,x波段的下沿会延伸到7ghz附近,6.5-9ghz的选择还可以顺便对某些特定卫星通信进行精确的定向干扰。
“如果重构信号补偿算法做得足够好,这个范围应该还有潜力可挖。”
徐洋在自己的专精领域还是能跟上常浩南思路的。
“现在最大的问题是设备的体积和重量会比双通道正交设计更大一些,而且也很难控制发热量和耗电量,想做成l005那样不占重载挂点的自卫吊舱是不用想了,好在咱们这个东西的性能要比l005强得多,一个编队里面有一架飞机挂两个,基本上就可以掩护整个机群。”
常浩南在纸上随手画了个扁长条形状的吊舱,然后又在头部画了个小风扇样式的东西:
“不过,反正我们现在也是挂在飞机上用,在头部加个冲击式发电机多少能解决一些供电问题,至于散热也可以靠引入空中的低温冷气解决。”说着他又在纸上画出了一个类似飞机的轮廓,只是画功一般让人有些分辨不清是歼8c还是歼轰7。
谋婚成爱 年代生活从情满四合院开始 末世道女 狗腿女皇 鱼丸配意面 豪门圈内全是瓜,全家跟我化身猹 天后的神豪男友 加油,林小娆! 重生一梦:豪门天价妻 华娱:当导演从改志愿开始 深情不妨来日方长 那个男人明明很强却过分休闲 砂隐忍村大开发 魔修洗白路 青梅在上:程少,放肆宠 家族修仙:开局一座南海灵岛 两个新娘 我曾听闻低语 从四合院开始的天道轮回 我的教练儿子
关于火影之宇智波的逆袭千手与宇智波建立了木叶,却又灭族于木叶。主角降生宇智波,要如何为族群谋出路,又该如何在这纷乱的忍界求生?...
路一平是个上古修士,亲眼见证了诸神大战中,无数强大的神灵殒落的情景。自此之后,他便躲在深山老林,日夜修炼,发誓没有强大到对抗天地大劫的实力时,便不出来。一个时代又一个时代过去了。他身边的一头小蛇,成为了龙族之祖。他收养过的一个小女孩,成了无敌女帝。他指点过的一个剑客,成了名响万古的剑神。他随意种下的一棵老树,成了史...
甘霖绑定系统的时候,系统失败了999次,即将被抹杀。系统该吃吃该喝喝,享受的日子没剩几天,千万记住那个男人就是恶魔,招惹到他就死定了!甘霖懂了。刚开始斯文败类影帝我为利益不择手段,挡我的都该死。阴郁黑化徒弟我为复仇隐忍蛰伏,挡我的都该死。冷血无情杀神我为篡位谋划多年,挡我的都该死。再后来人前凶残阴戾如恶狼,人后暴躁撒娇小奶狗。我怕黑,三分钟内赶来陪我。你不能喜欢别人,你只能喜欢我。听见了没,老子离不开你,敢跑我打断你的腿!甘霖嗯?男人没有你我会死,别离开好不好。甘霖嗯。系统以为带了个青铜,没想到宿主当场超神带躺赢!如果您喜欢偏宠反派的主神回来了,别忘记分享给朋友...
少年修万道至尊经,逆天化龙,无可匹敌,任你一代天骄,任你风华绝代,若与我为敌,统统镇压!...
关于狂妃有毒,妾居一品全本三年前,他迎娶新妃之时,她毅然选择离开。三年后,她强势回归,一袭火红长裙绽放耀眼光芒,灼痛了谁的眼?十五年后复仇途中,被人一棒打晕塞上花轿,心不甘情不愿嫁入墨王府。为掩饰身份,一张人皮面具遮住那张倾世容颜。龙泽皇帝一朝被毒,她为君涉险寻冰天蟾,一身绝顶医毒之术令他惊艳。当帝国面临岌岌可危之地,他运筹帷幄步步为营,为寻找幕后黑手,他迎娶她人,心爱之人则由嫡妃贬为侧妃。当他手刃黑手,蓦然回...
关于结婚后,她被白切黑老公狂拆马甲外界都传封太太是个岛上土著,又黑又丑,一无是处,甚至浑身都是鱼腥味。可等到见了真人,全都懵逼脸这位肤白貌美的仙女是哪位?某腹黑大佬婚后只爱一件事,拆老婆马甲,越拆越心动。国医圣手?顶级财阀?科研专家?调香大师?黑客女王?封厉寒他好像发现了什么宝贝。直到某一天,各路大佬争相拜师,小狼狗小奶狗疯狂表白,他觉得,该宣誓主权了。老婆,我有点不太舒服我扶你回家嗷,乖。众人???封爷...